큰）防治新技術

文／圖林驟奇

一，前言

為水稻重要病害之一，自1966年後全國每年兩期稻作發病面積皆達 10% 以上，造成稻赫產量損失達 $14-17 \%$ •病勢發展需高溫高濕環境，氣溫 $28-30^{\circ} \mathrm{C}$ ，相對港度 $81-92 \%$ 時最適合發病，常見於水稻分算期 \cdot 病原菌以田間菌核為初級感染源•感染植株後由下往上發展•再藉由菌絲傳染至其他稻株，罹病部位之菌絲再形成菌核残留田間•成為下一期作之感染源（圖 1）。故水稻紋枯病發生後難以根除，成為重要風土病害。

圖 1．稻株罹染紋枯病部位會形成菌核遺留田間，成為下一期作感染源。

臺東地區全年紋枯病發生時期，以 5月上旬至 10月下旬為好發期•此時溫度高且易有雨。尤其以第一期作發生較為嚴重•因病害發生時正值水稻分蒕盛期至收穫期•影響產

圖 2．有機水稻田發生紋枯病時，因無有效防治資材，嚴重影響收成。

量甚巨。目前主要水稻栽培品種對紋枯病皆無抗病性，當病害發生時慣行農法可施用化學農藥進行防治，而有機水稻栽培目前尚無有效可用之防治資材，農民常束手無策（圖 2 ）。為協助有機水稻進行紋枯病管理工作，本文介紹近 3年應用非化學農藥資材防治該病害之研究成果，供農友防治參考使用。

二，非化學農藥資材及作用機制

選用市售可購得之亞磷酸及非化學農藥資材如木徽菌，枯草桿菌及放射線菌 4 種•這些資材皆符合有機栽培規範•但亞磷酸於使用時須先提報使用計畫．送經潋登機構審查認可•經試验暸解各資村作用機制•如以亞䊙酸處理後之稻株可促進植株產生免疫能力使病原菌不

圖 3．稻株經亞磷酸處理（左）及對照組（右）之菌核感染情形

圖 4．木徽菌生長快速抑 圖 5．枯草桿菌產生抗生制病原菌發展，被侷限 素抑制病原菌生長擴大於中央。

易侵入，若被感染後之病斑亦較侷限
－而未經處理稻株之病斑呈淡褐色水浸狀沿稻株莖部拉長擴大（圖3）；
而 3 種微生物中．木徵菌藉由快速生長與病原菌競爭營養及生存空間，枯草桿菌及放射線菌則可產生抗生素抑制病原菌擴大（圖 4－6）

三，田間試驗結果

試驗於 2013 年水稻第一期作之有機稻田進行，試驗處理之亞磷酸為 1,000倍稀釋•微生物製劑皆為 250 倍稀釋（使

用時加入清香苦楝油 250 倍作為展著劑）。分別以單劑，複方組合及對照組 （水）處理，共 8 種。於病害發生初期進行防治，每 4－5天噴施一次，連續3次；於噴藥前，第3次施藥後5 天及第 14 天調查罹病度及罹病株率，共計 3 次。試驗期間於 5 月下旬至 6 月中旬，受梅雨鋒面影響連日有雨，加重田間罹病程度，更顯現處理間之防治效果差異。

比較三次調查結果（表1），若將各處理防治後第2，3次調查結果相減第 1 次未防治之罹病度數值，結果顯示：4種單劑處理，以亞磷酸效果優於其他 3種微生物，其罹病株率亦低；在3種複方處理中，亞磷酸混用微生物其防治率更優於單劑處理，罹病度僅些微增加。而罹病株率逐漸下降，病害未再擴大傳染；對照組於數據上看似較單劑微生物處理輕微，但從三次調查結果比較，其罹病度及罹病株率明顯上升，並於 6 月底收穫時罹病度已達 70% 以上。從試驗觀察發現亞磷酸與微生物混合使用對病害防治具有加乘效果，其中以亞磷酸混合木徽菌效果最佳（圖7）。

四，結論

水稻為臺東地區重要產業，近年監測轄區發現紋枯病經由擎溉系統危害面積逐漸擴大。另•收穫後遺留之田間稻稈成為病原菌繁衍溫床，菌核密度逐年增加，每期稻作發病情形日趨嚴重。本場為推動轄區有機產業及食品安全，

表1．應用亞磷酸及非化學農藥資材防治水稻紋枯病之調查

處理	第一次調查		第二次調查		第三次調查	
	罹病度 (\%)	罹病株率 （\％）	罹病度 （\％）	罹病株率 (\%)	罹病度 （\％）	罹病株率 （\％）
亞磷酸	$9.8 \mathrm{a}^{*}$	26.5	12.0 bcd	34.5	22.3 bc	36.0
枯草桿菌	12.3 a	38.0	19.3 ab	39.5	40.7 ab	56.5
木徽菌	11.7 a	34.5	20.0 a	43.5	44.1 a	65.5
放射線菌	18．9 a	51.5	22.2 a	56.0	53.4 a	76.5
亞＋枯	17.9 a	47.0	12.8 d	47.0	20.4 c	38.5
亞＋木	12.6 a	37.0	12.0 d	41.5	13.6 c	32.0
亞＋放	15.9 a	42.0	10.5 d	52.5	17.5 c	34.0
對照組	5.4 a	19.5	11.5 abc	26.0	20.4 bc	34.0

＊不同處理間先進行顯著性測驗，如差異顯著，依 LSD 測定 5% 顯著性差異。
全力發展作物病蝁害非化學農藥防治技術，以利擴大有機栽培面積並減少慣行栽培農藥殘留問題。此項試驗成果藉由舉辦觀摩會及講習會現場示範配製方法，提供農友參考使用。此外，應特別注意亞磷酸為強酸，氫氧化鉀為強鹼，秤取時宜戴手套及口罩 • 配置順序為先加入亞磷酸攪拌溶解後，再倒入氫氧化鉀攪拌至透明澄清，再依序加入微生物及

圖 7．對照組（左）與亞磷酸混合木徵菌處理（右）之水稻植株比較

清香苦楝油混合，現配現用，避免久置降低防治效果。建議於水稻植株分蘗盛期前使用，4－5 天一次，連續三次，即可有效減少紋枯病的發生。
（備註：本文所列之操作方法及資材僅供參考．農友進行有機裁培管理時 • 仍需依各驗證機構相關法規進行操作。）

